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1 Kolmogorov Consistency and Wiener’s Theorem

1.1 Filtrations and consistency

Definition 1.1. A filtration is a family (Ft, t ∈ I) of σ-fields such that

1. Ft ⊆ F .

2. Fs ⊆ Ft for s ≤ t.
Definition 1.2. Given a state space (S,S), a transition kernel PS(x, ·) is defined by:

1. PS(x, ·) is, for fixed S, a probability measure on (S,S).

2. x 7→ PS(x,B) is S-measurable for B ∈ S.

3. We have some niceness in S (Chapman-Kolmogorov equation).

How do we specify a stochastic process? We specify finite dimensional distributions
and glue them together. These distributions must be consistent.

Definition 1.3. Given an index set I, finite subsets F of I, and a “nice”1 state space
(S,S), denote SF as the product space of S indexed by F . Each SF has a probability
measure πF . The system of finite dimensional distributions is consistent if for all F ⊆ G,
the image of πG by the projection from SG → SF is πF .

Theorem 1.1 (Kolmogorov consistency). Let I be an index set whose finite dimensional
distributions are consistent. Then there exists a process (xi, i ∈ I) whose finite dimensional
distributions are the πF . Here, we have (SI ,SI), where SI is generated by the projections
X : SI → S.

Remark 1.1. There is an issue with SI . Every event in SI is determined by some countable
number of coordinates (Proof: Consider the collection of all events of this kind, and prove
it is a σ-field).

Example 1.1. Take Brownian motion as an example. I = R+, and the finite dimensional
distributions are N(0, t) for (Bt, t ≥ 0).

1Look at Durrett to see more about what “nice” means.
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1.2 Wiener’s theorem

What is P (BM has continuous paths)? This cannot be determined by countably many
points, so we must reframe the question.

Theorem 1.2 (Wiener). On (Ω,F , P ) = ([0, 1],B,Leb), there exists a stochastic process
(B(t, ω), t ≥ 0, ω ∈ Ω) such that

1. For 0 ≤ t1 < t2 < · · · , < tn, Bt1 , Bt2−Bt1 , . . . , Btn−Btn−1 are independent with mean

0 and variance t1, t2,−t1, . . . , tn− tn−1 (this is consistent because N(0, s) ∗N(0, t)
d
=

N(0, s+ t)).

2. P ({ω ∈ Ω : t→ B(t, ω) is a continuous function}) = 1.

This implies that we can discuss a law of the path of Brownian motion on C[0,∞),
where C[0,∞) is the canonical space of continuous paths. It has Borel sets and can be
made a metric space where convergence is uniform convergence on all compact sets. It is
what is called a Polish space, which means that it is separable and complete. We get that
ω → (B(t, ω), t ≥ 0). The image of the map Ω→ C[0,∞), is called Wiener measure.

Proof. (sketch) Let D := {k/2n : k, n ∈ N}. We first want to create (Bt : t ∈ D). Even
before that, we need to create infinitely many independent standard normal random vari-
ables. Given x ∈ [0, 1], we can take the binary expansion of x; we can turn this into two
numbers by taking the even and odd places in the expansion respectively and interpreting
them as separate binary expansion of two numbers. In this way, we can turn a U [0, 1]
into a pair of independent uniform [0, 1] random variables. Similarly, we can get three
independent U [0, 1] random variables by taking each third place in the binary expansion
of x. There is a cute way to get infinitely many independent U [0, 1]; do the same process
except taking distinct multiples of distinct primes. Now, apply Φ−1 to each uniform [0, 1]
random variable to get (Z1, Z2, Z3, . . . ), where the Zi are IID standard normal.

It is enough to construct Brownian motion on [0, 1] because we can just concatenate
independent copies of paths on [0, 1] together. This is Levy’s construction for Brownian
motion on [0, 1]. First, let B0 = 0, and then let B1 = Z1. What is B1/2? We know that
E[B1/2 | B1] = (1/2)B1 and Var(B1/2 | B1) = σ2 for some constant σ. The distribution of
B1/2 given B1 is N(B1/2, σ

2). So B1/2 := (1/2)B1 + σZ2. Check that B1/2 and B1 −B1/2

are IID N(0, 1/2). Do the same for B1/4 and B3/4; i.e. B1/4 := (1/2)B1/2 + (6/
√

2)Z3 and

B3/4 := (1/2)B1/2 + (σ/
√

2)Z4. Continue until we have defined Brownian motion on all of
D, the dyadic rationals.
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